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A finite-dimensional analog of Weyl's formulation of quantum kinematics of a 
physical system through irreducible Abelian groups of unitary ray rotations in 
system space offers many possibilities for the quantum mechanics of confined 
particles. This paper is devoted to the expansion of the recently developed 
framework of such Weylian finite-dimensional quantum mechanics which may 
provide a new way of thinking about the characteristics of quark physics. 

1. INTRODUCTION 

The theory of finite-dimensional quantum mechanics developed in 
recent contributions to this journal by the author and collaborators 
(Jagannathan et al., 1981; Jagannathan and Santhanam, 1982, hereafter 
referred to as I and II) suggests that for confined particles finite-dimen- 
sional matrices consistent with the Weyl relation 

exp( iOpq/h )exp(ir0/h ) = exp( ior/h )exp(ir0/h )exp(iOfiq/h ) (1) 

corresponding to the Heisenberg rule 

[ ft, rio] = ih (2) 

should replace the customary infinite-dimensional Schr6dinger representa- 
tions for position and momentum operators. In this paper it is noted that 
the framework of the finite-dimensional quantum mechanics presented in I 
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and II admits further expansion with interesting consequences for the 
physics of quarks. 

At the basis of the development of our new theory of quantum 
mechanics of confined particles are the following: the fundamental works of 
Weyl (1932) and Schwinger (1960a, 1960b) on the understanding of the 
Heisenberg-Schr/3dinger formulation of quantum kinematics through the 
steps of finite-dimensional realizations of (1); the contributions of Alladi 
Ramakrishnan and collaborators to the mathematical aspects and physical 
applications of generalized Clifford algebras with generating relations of 
the type (1) (cf. Alladi Ramakrishnan, 1971, 1972; Alladi Ramakrishnan 
and Jagannathan, 1976; Jagannathan and Ranganathan, 1974, 1975; 
Jagannathan, 1978, and references therein for details on generalized Clifford 
algebras); and certain ideas on a form of quantum mechanics in discrete 
space based on (1) pursued by Santhanam (cf. Santhanam and Tekumalla, 
1976; Santhanam, 1977a, 1977b, 1978). Other sources of encouragement for 
investigations in this direction are the currency of space-time lattice ap- 
proaches, though purely on a technical basis, to the gauge theories of quarks 
since the advent of Wilson's model in 1974 (cf., e.g., Kadanoff, 1977; 
Kogut, 1979, for reviews and detailed references) and the occurrence of 
commutation relations of the type (1) in the discussions of quark confine- 
ment (el. ' t  Hooft, 1981). 

As already emphasized in I and II in our theory the configuration space 
of a particle is considered to have an eigenstructure derived from certain 
dynamical characteristics of the particle and as usual time is regarded to be 
an independent continuous parameter. In other words according to our 
theory position of a particle is an observable with a quantized spectrum just 
like energy, angular momentum, spin, etc., whereas the physical space itself 
is thought of only as a continuous manifold. The philosophy underlying this 
theory is that the physics of a particle with natural permanent confinement 
may involve only a position operator that has all its eigenvalues realizable 
within the region of confinement and hence in such a case the use of the 
customary Schr6dinger operator with an unbounded spectrum, though 
along with suitable boundary conditions on the wave function, may be 
improper. 

The idea of space-time quantization or the existence of some funda- 
mental length and time has a long history in modem science starting with 
conceptual discussions like by Riemann in 1854 and by Einstein in 1921 
and the initial applications to mathematical models of physical interest by 
Watagin, Markov, Ambartsumyan and Ivanenko, Heisenberg, Snyder, Yang, 
and others (cf., e.g., Blokhinstev, 1973; Dober and Yankovsky, 1968; 
Heisenberg, 1966; Ginsburg, 1976; Vyaltsev, 1965, for surveys and detailed 
references). Particularly in connection with the theories of elementary 
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particles the nature of the microstructure of space-time is being repeatedly 
discussed (cf., e.g., Barut and Bracken, 1980; Cole, 1973; Dadic and Pisk, 
1979; Ehrlich, 1978; Finkelstein, Frye and Susskind, 1974; Kadyshevsky, 
1978; Lorente, 1981; Recami, 1981; Saavedra and Utreras, 1981; Stovicek 
and Tolar, 1979; Tati, 1980; Zidell, 1981, for recent discussions of the 
subject and also references to the earlier literature). Hence to distinguish the 
finite-dimensional quantum theory developed by us inspired by the state- 
ment of Weyl (1932) on the significance of the finite-dimensional realiza- 
tions of (1) with regard to the fundamental laws of Nature at the level of 
nuclear physics from other forms of quantum mechanics based on different 
versions of space-time quantization ] our theory derived in I, II, and the 
present paper may be called "Weylian finite-dimensional quantum mechan- 
ics" (WFDQM) or "Weylian quantum mechanics" (WQM) in short. 

In Section 2 a precis of the formalism of the W F D Q M is presented 
generalizing the basic structure derived in I and II by way of inclusion of a 
few more parameters consistent with the fundamental principles involved. 
In Section 3 the forms of nonrelativistic and relativistic wave equations in 
the WFDQM are discussed briefly. In conclusion the permanent quark 
confinement phenomenon is viewed in the light of the W F D Q M in Sec- 
tion 4. 

2. A PRI~CIS OF THE W F D Q M  

For any confined particle the governing quantum mechanics, the 
WFDQM, is supposed to be determined by a set of "space quantum 
numbers," J, M, S, and )~, associated with the particle such that 

J , M ~  (1,2,3 . . . .  ), S ~  {0,1,2 . . . .  ), 0 < ) ~ < m  (3) 

M < 2 J + I ,  g.c.d. ( M , 2 J +  1) = 1 (4) 

Any given set 
corresponding 
momentum" 77 

of space quantum numbers (J ,  M, S,)~) defines for the 
particle a "quantum of position" e and a "quantum of 
through 

e = X(2rrh2G(S + [ M / ( 2 J  + 1)]) /e2c2)  '/2 (5) 

71 = )~- '(2rre2c2( S + [ M / ( 2 J  + 1) ]} /G) , /2  (6) 

I Recently Gudder and Naroditsky ( 198 I, International Journal of Theoretical Physics, 20. 619) 
also have given a formalism of finite-dimensional quantum mechanics very. similar to ours in 
structure but with somewhat basically different assumptions on the nature of the spectra of 
position and momentum. 
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with 

2~r(S+ [ M / ( 2 J +  1)]) = ~ =  e~/h (7) 

X = (e2c2e/hGn) I/2 (8) 

representing the two simple dimensionless expressions involving e, 71, and 
the universal constants, e, c, h, and G. Then the fundamental postulates 
of the WFDQM of the particle are as follows: (I) The radial coordinate r of 
the particle defined with respect to the center of a sphere of confinement 
has only the eigenvalues 

r,,=ne, n = l , 2  .. . . .  2 J + l  (9) 

Consequently the corresponding radial coordinate operator R in the posi- 
tion representation is the (2J  + l)-dimensional matrix with elements 

( nlRln') = e( nlNln' ) = enS.., 

n , n ' = l , 2  .. . . .  2 J + l  (lO) 

(II) The radial momentum of the particle p~ has the eigenvalues 

p~,,=n~, n = O , + l , _ 2  .. . . .  + ' J  (i1) 

The corresponding radial momentum operator P~ is defined to be conjugate 
to the radial coordinate operator R such that 

exp( i ePJ  h )exp( inR / h ) = exp( ie*l / h )exp( i~lR / h )exp( i ePJ  h ) (12) 

like in the Weyl relation (1). Then P. is given in the position representation 
by the (2J + 1)-dimensional matrix with elements 

0 
(n [P.ln') = { ( in'~/2n )cosec[27rJM( n - n ' ) / (2J  + 1)] 

ifn = n' 
ifn ~= n' 

n, n '=  1,2,3 .. . . .  2 J + l  (13) 

(III) The angular coordinates O and cp in any spherical polar coordinate 
system defined with the center of the sphere of confinement as the origin 
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have finite and continuous spectra as usual with the values 

0~<0<~r ,  0 ~< cp < 21r (14) 

Thus in the (r,  0, ~o) representation the state vector of the particle, I ' t '(t)),  
has (2J  + 1) components with each component as a function of 0 and cp and 
the operator corresponding to any observable is to be derived from its 
normal quantum counterpart in the (r, 0, cp) representation simply by the 
replacement rule 

P---,R, , o , ~ P r  (15) 

without any change with regard to 8 and ~0. Except for this replacement of 
the customary operators P and /~r for radial coordinate and momentum, 
respectively, by the relevant finite-dimensional analogs R and Pr and the 
consequent changes in the mathematical operations all other formal aspects 
of the usual Heisenberg-Schr6dinger quantum theory are to be adopted in 
the obviously straightforward manner whether it is nonrelativistic or relativ- 
istic case, i.e., whether the finite-dimensional Hamiltonian is derived using 
the rule (15) from nonrelativistic or relativistic normal quantum Hamilto- 
nian. 

The following remarks are to be noted in connection with the above 
formalism. 

(i) The development of the operator P~ is as follows. 

P, = R - I P R  = N - u P N  = *IN-I~)N (16) 

( n l N l n ' ) = n S . . , ,  n , n ' = l , 2 , 3  . . . . .  2 J + l  (17) 

= f 0  i fn  = n' 
(nl~ln') ( i / 2 ) c o s e c [ 2 ~ r J M ( n  - n ' ) / ( 2 J +  1)] if n ~ n' 

n , n ' = l , 2 , 3  . . . . .  2 J + l  (18) 

d# = S97~S -~ = $ ~ , S  + (19) 

( s [ ~ 6 ) L l s ' > = S ~ s s , , S , S ' = - J , - J + l  . . . . .  - 1 , 0 , 1  . . . . .  J - 1 , J  (20) 

(n lSls)  = (2J  + 1)- I/2w"s 

n = l , 2  . . . . .  2 J + l , s = - J , - J + l  . . . . .  - 1 , 0 , 1  . . . . .  J - 1 , J  (21) 

r = exp(i~) = e x p ( i e * l / h )  = e x p [ i 2 r r M / ( Z J  + 1)] (22) 

The matrices N and �9 are seen to be Hermitian. 
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(ii) The conditions 

exp[ i (2J  + 1) e P r / h  ] = I (23) 

e x p [ i ( 2 J +  1)~R / h ] = I (24) 

with I as the ( 2 J +  1)-dimensional unit matrix, subsidiary to (12), help 
fixing the spectra of r and Pr uniquely as in (9) and (11). The relations (I 2), 
(23), and (24) are easily verified by observation that if 

(~ = exp( i e P J  h ) = N - ' e x p ( i e P / h ) U  (25) 

= e x p ( i ~ R / h )  (26) 

then 

= N -  ~AN = 

= 

satisfying 

0 2 0 0 . . -  0 

3 0 0 0 0 ~ - . .  

o o o .-4, . . .  o 

0 0 0 0 . . .  ( 2 J  + 1 ) / 2 J  

l / ( 2 J +  1) 0 0 0 . . . .  0 

O~ 

09 2 ,Q~ 

09 3 

~J ~0 2J  

(27) 

(28) 

~ 3  = ~ o 6 ~  ', (29)  

~2J+l = I (30) 

~2J+l = I (31) 
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in accordance with (12), (13) and (24), respectively. It is to be recalled that 
the unitary irreducible representation of the set of relations 

A B  = r  A2J ~ I = 1, B 2J ~ J -- 1 

~ o = e x p [ i 2 v M / ( 2 J + l ) ] ,  g . c . d . ( M , 2 J + l ) = l  (32) 

is provided by 

A = 

0 1 0 - - -  0 

0 0 1 . . .  0 

0 0 0 . . .  1 

1 0 0 . . .  0 

B = 

co O 

~2 
(33) 

uniquely up to equivalence (Weyl, 1932). 
(iii) The choice of an even integer as the dimension of the matrices R 

and Pr and the natural requirement of a symmetry between the positive and 
negative parts of the spectrum of Pr lead to the exclusion of the zero 
eigenvalue for Pr implying an a p r i o r i  unreasonable assumption of a sort of 
inherent eternal motion for the particle. Hence the dimension of the 
matrices R and Pr has been taken here to be an odd integer. If needed the 
even-dimensional case for R and Pr can be readily developed in a manner 
parallel to the odd-dimensional case. 

(iv) The above description uses spherical polar coordinates defined in a 
frame stationary with respect to the center of the sphere of confinement of 
the particle fixed as the origin and in this preferred frame the eigenstructure 
of the configuration space of the particle has rotational invariance. The 
corresponding picture in any other frame can be obtained by the usual 
coordinate transformation formulas. 

(v) In treating any system involving more than one particle the usual 
direct-product formalism must be employed. 
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3. WAVE EQUATIONS IN THE WFDQM 

As examples of using the above formalism the forms 
Schr~Sdinger equation 

taken by the 

ih 0 Iq '( t ))  --- ~ I ' t ' ( t ))  (34) 

in the WFDQM will be considered below for (i) the nonrelativistic case of a 
particle under the influence of a central potential V(r), (ii) the relativistic 
case of a free spin-0 particle of the Klein-Gordon type, and (iii) the 
relativistic case of a free spin- l /2  particle of the Dirac type when each of 
them belongs to a specific (J ,  M, S. X) representation of the WFDQM. 
Here by "free" is meant that the forces acting on the particle inside the 
sphere of confinement are neglected and the inclusion of such forces can be 
done as is customary in the normal quantum theory, of course using the 
finite-dimensional equivalents of the relevant operators. Then the results in 
the three cases mentioned are as follows. 

(i) For the nonrelativistic case of a particle of effective mass/~ under 
the influence of a central potential V(r), (34) takes the form 

with 

i h ~  I ' I ' ( t ) )=  [-(h2/2Ix)V2 + V(R)] I 'I ' ( t))  

1 a( h) sin 0 00 sin 0 q 

(35) 

(36) 

1 8 2 ] 
(37) 1 sin20 0~ 2 

For a stationary state with 

I't',,m ( t ) )  = R-'  IX,,,,,)Y~m(O, ~ ) e x p ( -  iE, imt/h ) (38) 

corresponding to a fixed set of angular momentum quantum numbers (l, m) 
the energy eigenvalues (E,am]n = 1,2 . . . . .  2 J  + l) are to be determined from 
the radial matrix equation 

{ ( 2 ~ ) - ' [ P  2 + l(1+ 1)h2R-2] + V(R)) ]Xn/m) = E,,,~ IXn,,,) (39) 

with P = RPrR- i as defined in (16). The allowed values of l and m are given 
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as usual by 

1 = 0 , 1 , 2  . . . . .  m = 0 , _ _ _ l , _ 2  . . . . .  +1 (40) 

Using the matrices N and r defined in (17) and (18), (39) can be written in 
a dimensionless form as 

[r + I ( I + I ) ~ - 2 N - 2  +21zrI-zV(R)] [X.; . . )=2Wo-ZE.; . ,  [X.;.,) (41) 

For example when the potential V(r) is the spherical harmonic potential 
~kr 2 (41) will have the form , 

[r  + l ( l +  1)~-2N -2 + kt~-2kR 2] [X.t.,) = 2P'rl-2E.;., IX.,.,) (42) 

For the case of a free particle with V (r )=  0 and J = 1 the energy 
spectrum can be obtained by substituting in (41) with V(R)  = 0: 

r 
( - - 1 ) M i  0 1 - 1 )  

- 1  0 1 
1 - 1  0 

(43) 

('~ N =  0 2 
0 0 

= 2~r [S + ( M / 3 ) ] ,  v I = X-'(2~reZc: [S + ( M / 3 ) ] I G )  '/2 

(44) 

M = l , 2 ,  S = 0 ,  I,2 . . . .  (45) 

for any choice of ~. The result can be expressed as 

EltV~., R = (~2/6/~)(2 + 49x o - 2ZoCOS[( r - a o ) /3]}  (46) 

EFNR = ( r /2/6p,)(2 + 49x  o -- 2ZoCOS[( ~r + a o ) / 3 ] )  21m 
(47) 

with 

E3;VN~ R = (r/2/6/z)(2 + 49x o + 2 ZoCOS (f~o/3)) 

x o = 1(1 + 1)/36~ 2, z o = (889Xo 2 + 1)i/2 

f~o = minimum of cos-1[(24013Xo 3 - 1)/Zo 3 ] 

(48) 

(49) 
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for any choice of (M, S, X). The superscript F N R  indicates free nonrelativ- 
istic case. 

(ii) For the relativistic case of a free spin-0 Klein-Gordon particle the 
equivalent of (34) is 

02 
- h e I ' t ' ( t))  = ( -  h2c2V2 +/ t ic  4) Iq ' ( t ) )  (50) 

Ot 2 

where V 2 is the same as defined through (36) and (37) and/z is the effective 
mass of the particle. Now for the stationary states 

[q' . t . ,(t)) = R - I [X.tm) Yl., ( O, cp)exp(-  iE.,mt / h ) 

n = l . 2  . . . . .  2 J + l ,  l = 0 , 1 , 2  . . . . .  m = 0 , _ l , + 2  . . . . .  ___l (51) 

the energy eigenvalues (E.t,,,) are determined by 

[c2p2 + h2cZl(l + l ) R - 2  +lZ2C4] [X . t . , )=  E,2,., IX.t. ,) (52) 

o r  

[~2 + l ( l + I ) ~  - 2 N - 2 ]  [X.t.,) = (VlC)-2(E,21,,,-/~2c') IX./ . ,)  (53) 

Comparing (53) and (41) with V(R)  = 0 it is obvious that in the case of the 
free Klein-Gordon particle the energy spectrum is given by 

2 FNR ~,,,m~"FKG = (2/.tC E.,., + 1~2c4)1/2  (54) 

where the solutions of (41) give trFNR~ k ~ n l m  J" 

(iii) For the case of a free sp in - l /2  Dirac particle of effective mass #, 
(34) takes the form 

= I q ' ( t ) )  

= [car|  r + i h c a r k |  - l  + I~C2fl| [g.'(t)) 

where the spinor I~( t ) )  has 4(2J  + 1) components. 

(55) 

O~ r = 

0 0 cos8 sin 0exp( - iq0) 

0 0 sin Oexp(iq0) - c o s 0  

cos0 sin Oexp( - icp) 0 0 

sin 0exp(iq0) - c o s 0  0 0 

(56 
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0 
0 
0 

- 1  

1 0 0 
/~= o 1 o 

0 0 - 1  
0 0 0 

k =  h -~ ( )  ~ - L~)+~ 

.] = L + S represents and the customary operator for the total 

(57) 

(58) 

angular 
momentum including spin. The stationary state solutions of (55) are given 
by 

Iq',,j.,p(/)) = �89 - iE.j. ,pt/h) • 

((l-p)[(j+m)/2j]l/2-(l+p)[(j-m+l)/(2j+Z)]l/2)Yj+,l/zlp.. , , / , ( O , r p ) R  ' IF,,,,,,v) 

((I- p)[(j-  m ) / 2  j ] ' / ' -  + (I + p)[(j+ m + 1)/(2j + 2)]Wa)Y~+./z, t ,  . . . .  , / z ( O , r p ) R  -1 IF,,,. ,v) 

i((l+p)[(j+rn)/2j]l/ '--(I-p)[(j-m+l)/(2j+2)]l/")Y~ iI/-',v.., I /z(O,q~ R - I  IG,,j.,t,) 

i((1+ p)[(j-  n l ) / 2 j ] l / ~ ' +  (I-  p)[(j+ ,,1 + 1 ) / ( 2 j +  Z)]t/~'}Yl_l, / , ,  , . . . .  , /2(O.  cp)R ' IG,,j.,p) 

n = l , 2  . . . . .  2J+l. j = 1 / 2 , 3 / 2  . . . . .  m = + _ 1 / 2 , + . 3 / 2  . . . . .  +_y, p=+l  (59) 

such that 

32 I,P.j.,p( t )) = j( j + 1)h z Iqt.j.,p( t )) (60) 

)~ I~I'.jmp(t)) = mh I't',,j,.p(t)) (61) 

~2 I%j, .p(t) )=3h2 [ql.j,.p(t)) (62) 

/362 ['t ' .j..p(t)) = ( -  1) j+(I/z)p I't'.jmp(/)) (63) 

B~" I q . , , j . , . ( t ) ) = - ( j + � 8 9  I~t..jm.(t)) (64) 

~ o  [ql,,j.,p(t))= E,,j,,,p [~t',,j.,p(t)) (65) 

Here p characterizes the parity of the states through (63) in which 62 
represents the usual parity operation. (For details on the standard treatment 
of the Dirac equation in polar coordinates from which the above derivations 
follow cf., e.g., Alonso and Valk, 1973.) The eigenvalue equation (65) for 
energy simplifies to the set of coupled equations 

[icp + hcp(j + IFojo, > = ( + 2) IC,..,p> 

[- icP +hcp( j+�89  -1] IG,,j.,p)=(E,,jmp-lxC2) IF,,j.,p) (66) 
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from which it follows that 

( dP2 + ( j  + �89 Z + ip(j + �89 N-',dP]) IFnj,,p) 

= (~C)-2(E~jmp--~2C4) [fnjrnp) (67) 

IG,,j,,,o)=[~lc/(E,,j,,,p+#CZ)][id~+ p ( j+ �89  -'] IF,,j,,,,> (68) 

When J =  1 the solution of (67) with the help of (43)-(45) leads to the 
energy spectrum of the free Dirac particle as given by 

Eljm pFD = ( ~ 2 0 4  --I- (,12c2/3)(2+49x - 2zcos[(~r - a) /3] ) )  '/2 ( 6 9 )  

FD = (]12C 4 + (,12c2/3)(2+49x - 2zcos[(~r + a) /3] ) )  '/2 (70) E2jmp 

E3j.,pFD _-- (i.tZc4 + (~lZc2/3)[2 + 49x + 2zcos( a/3)]) '/2 (71) 

with 

x=(j+�89 2, z=(889x2+312y2+l) '/2, 

y = ( - 1) Mp( j + �89  

= minimum of cos-  t [(24013x 3 + 11268xy 2 + 2592y 3 

+ 468y 2 - 256xy - 1 ) /z  3] (72) 

for all values of M and S from (M = 1,2, S = 0, 1,2 . . . .  ) and any choice of ~. 

4. CONCLUSION: QUARK CONFINEMENT  AND T H E  
W F D Q M  

The motivation for the development of the WFDQM is as follows. Just 
like the transition from classical to quantum mechanics in the domain 
of atomic physics it is likely that in the realm of subnuclear physics 
the quantum kinematical basis itself undergoes a transition from the 
Heisenberg-Schr6dinger phase with infinite-dimensional representations of 
position and momentum operators to a finite-dimensional Weyl phase 
consistent with the expression (1) of Heisenberg's canonical commutation 
relation (2). The physical realization of this phase transition of quantum 
theory can happen in two ways as follows. 
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(i) For any particle the space quantum numbers are not constants but 
vary in such a way that when J ~ oo, 

( n l R I n ' )  ---, ( r l f l r ' )  = r S (  r - r ' )  

0 

(73) 

(74) 

i.e., the Heisenberg-SchrOdinger quantum theory is the asymptotic ap- 
proximation of the WFDQM in accordance with the general philosophy of 
Bohr's correspondence principle. For instance, for a particle of mass /~ 
confined to be within a sphere of radius p the model presented in I and II 
suggests, in the language of the present paper, that 

J =  integer part of (1/2)[(O21~2cZ/2~rh2) - 1] (75) 

M = I ,  S = 0 ,  ~ = 2~'/(2J + 1), for any J (76) 

= e / # G  I/2, for anyJ  (77) 

e = [ 2 ~ r / ( 2 J + l ) ] l / Z h / I x c ,  0<~ ( p / e ) - ( 2 J + l ) < 1  (78) 

~/= [2~r/(2J+ 1)]'/2/1c (79) 

limp ---, oo, J ~ o o ,  e ~ 0 ,  ~ /~0 ,  (2J + 1)e--* oo, 

Jn--,oo, R e, er--'Pr (80) 

Then it is also seen that the energy spectrum of the nonrelativistic spherical 
harmonic oscillator with J =- 1 considered in II reduces in the zero frequency 
limit to the free particle energy spectrum of (46)-(49) corresponding to the 
choice of parameters as in (76)-(79) with J = 1. From this point of view the 
confinement phenomenon itself is not the result of the WFDQM governing 
the particle but whatever may be the forces causing confinement in any 
particular situation the WFDQM with proper space quantum numbers 
should provide the correct picture of the dynamics of the confined particle 
since the customary Heisenberg-Schr6dinger quantum theory should be 
valid strictly only for an unconfined particle with 0 = oo. Of course in 
practice even in the case of atomic and nuclear phenomena happening 
essentially within some bounded region of space the value of J can be so 
large, as for example in the model based on (75)-(80), that the usual 
quantum theory is quite adequate. However, for the case of quarks under 
permanent confinement within extremely small region of space the WFDQM 
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corresponding to low values of J must replace the normal quantum mechan- 
ics just like quantum mechanics replaces classical mechanics in the realm of 
atomic physics. In this connection it is to be noted that the choice, M = 1, 
S = 0, for any J, as in (76), is the only permissible choice from this point of 
view which requires naturally that for any particle the change of formalism 
with O must be in a definite fashion and as 0 --" ~ (80) is realized uniquely. 

(ii) A radically different alternative to the point of view (i), advocated 
in I and II, is to consider that each particle has associated with it a set of 
fixed characteristic values for the space quantum numbers J,  M, S, and ~. 
Just like a particle of definite mass and spin is thought of as corresponding 
to a particular representation of the Poincar6 group each one of the 
physically distinct realizations of the WFDQM labeled by different sets of 
values for (J ,  M, S, ~,) may be associated with its own particle. Thus all 
freely occurring or isolatable particles may correspond to very large values 
of J so that 

J =  ~ ,  M = 1, S = 0, ~ = (e2c2e/hGr/) I/2 

e---0, r/---0, ( 2 J + l ) e = ~ ,  Jr/=~, (2J+l)er/=2~rh 

(81) 

and the usual Heisenberg-Schr6dinger quantum theory is satisfied very well 
by them under all circumstances. When such a particle is trapped inside a 
finite spherical region its position and momentum operators do not change 
their structure, but only the wave function is subject to the boundary 
conditions implying the absence of the particle outside the region of 
confinement, as is customary in the current quantum mechanical treatment. 
Among such particles with the same large value for J intrinsic differences 
can occur owing to different values for X or e/r / .  This follows from the fact 
that the necessary and sufficient conditions to be satisfied for the 
Heisenberg-Schr~dinger quantum theory to hold well are that e = 0, r /= 0, 
(2J  + 1)e--- ~ ,  J r / =  ~ ,  and (2J  + 1)er/= 2~rh, whereas e / r /  can take any 
positive value. Now the interesting situation arises when a particle belongs 
to low values of both J and e. Such a "quark" will have a finite permanent 
characteristic confining radius, namely, (2J  + 1)e, the maximum eigenvalue 
of its radial coordinate, and it can occur only as a constituent of a 
conglomeration of other quarks so that the resulting composite "hadron"  
can provide a rest frame for the formation of the sphere of confinement of 
its "partons".  Inside this sphere of confinement the constituent quarks can 
be quite "free",  obeying equations of the type considered in the previous 
section with "gluons" mediating the quantum jumps between the different 
levels of the energy spectra. The principal quantum number n with (2J  + 1) 
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possible values for any given J may be just  what  has been identified 
presently as the "color"  of the quark and the quan tum numbers  M and S 
may  be responsible for the "f lavors"  of  the quarks. Following the current 
picture of the quark world if the number  of colors is taken to be three then 
the quarks must  belong to J = 1 ,  the min imum value for J,  and there can be 
a series of  "genera t ions"  (S  = 0, 1,2 . . . .  ) of quarks with two distinct flavors 
( M  = 1,2). Fur ther  intrinsic differences can be induced by different possibil- 
ities for X. Also since X is the only distinguishing factor between different 
kinds of freely occurr ing particles it may  provide the link between the 
confined quark  world and the free lepton world. At  present I am able to 
give only an inchoate account  of  how the W F D Q M  can add color and 
flavor to the quarks and keep them glued as partons of  a hadron.  Only 
further experimentat ion in the W F D Q M  laboratory,  part icularly with dif- 
ferent models for ?~, can show whether there is any truth in such a picture of  
the subnuclear spectroscopy. Anyhow I believe that the clue to the solution 
of  the puzzles of  subnuclear physics may lie in the following prophet ic  
words of  Weyl (1932), the initiator of  the gauge principle, which has led to 
the beautiful synthesis of  the theories of fundamenta l  forces (Weinberg, 
1980; Salam, 1980; Glashow, 1980). 

The kinematical  structure of  a physical system is expressed by an 
irreducible Abelian group of  unitary ray rotat ions in system 
space . . . .  If  the group is cont inuous this procedure  automatical ly 
leads to Heisenberg 's  formulat ion . . . .  Our  general principle al- 
lows for the possibility that the Abelian rotat ion group is entirely 
discontinuous,  or that it may  even be a finite group . . . .  But the 
field of  discrete groups offers many  possibilities which we have 
not yet been able to realize in Nature;  perhaps these holes will 
be filled by applications to nuclear physics. 
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